Short Course

State Space Models, Generalized Dynamic Systems and

Sequential Monte Carlo Methods,

and

their applications

in Engineering, Bioinformatics and Finance

Rong Chen
Rutgers University
Peking University

1.2 Review: Kalman Filter

Linear and Gaussian System:

state equation: $x_t = H_t x_{t-1} + W_t w_t$ where $w_t \sim N(0, I)$

observation equation: $y_t = G_t x_t + V_t v_t$ where $v_t \sim N(0, I)$.

Examples:

• Local level structural model

state equation $m_t = m_{t-1} + \varepsilon_t$ observation equation $y_t = m_t + e_t$

- Example: y_t : realized volatility. m_t underlying true volatility

• (random) varying coefficient linear models

state equation
$$\beta_{i,t} = \beta_{i,t-1} + \varepsilon_{i,t}$$

observation equation $y_t = \sum_{i=1}^d \beta_{i,t} x_{i,t} + e_t$

- Example: varying beta in CPAM:

$$y_t = \alpha_t + \beta_t M_t + e_t, \quad \alpha_t = \alpha_{t-1} + \varepsilon_{1,t} \quad \beta_t = \beta_{t-1} + \varepsilon_{2,t}$$

• AR process observed with noise

$$\mathbf{state} \begin{bmatrix} x_{t-p+1} \\ x_{t-p+2} \\ \vdots \\ x_{t-1} \\ x_t \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ \phi_p & \phi_{p-1} & \phi_{p-2} & \cdots & \phi_1 \end{bmatrix} \begin{bmatrix} x_{t-p} \\ x_{t-p+1} \\ \vdots \\ z_{x-2} \\ x_{t-1} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \varepsilon_t$$

$$\mathbf{observation} \qquad y_t = x_t + e_t$$

3

• ARIMA models: $\phi(B)x_t = \theta(B) \ \varepsilon_t$

$$x_t = \phi_1 x_{t-1} + \ldots + \phi_p x_{t-p} + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \ldots + \theta_q \varepsilon_{t-q}.$$

Let $\phi(B)z_t = \varepsilon_t$ and $x_t = \theta(B)z_t$, then $\phi(B)x_t = \theta(B) \varepsilon_t$.

Assume q < p.

$$egin{bmatrix} z_{t-p+1} \ z_{t-p+2} \ \vdots \ z_{t-1} \ z_{t} \ \end{bmatrix} = egin{bmatrix} 0 & 1 & 0 & \cdots & 0 \ 0 & 0 & 1 & \cdots & 0 \ 0 & 1 & \cdots & 0 \ \end{bmatrix} egin{bmatrix} z_{t-p} \ z_{t-p+1} \ \vdots \ z_{t-p+1} \ \end{bmatrix} + egin{bmatrix} 0 \ 0 \ z_{t-p+1} \ \vdots \ z_{t-p+1} \ \end{bmatrix} + egin{bmatrix} 0 \ 0 \ z_{t-p+1} \ \vdots \ z_{t-p+1} \ \end{bmatrix} + egin{bmatrix} \varepsilon_t \ z_{t-1} \ \end{bmatrix}$$

and

$$x_t = [heta_{p-1}, heta_{p-2}, \dots, heta_1, 1]$$
 z_{t-p} z_{t-1} z_t

Linear and Gaussian System:

state equation: $x_t = H_t x_{t-1} + W_t w_t$ where $w_t \sim N(0, I)$

observation equation: $y_t = G_t x_t + V_t v_t$ where $v_t \sim N(0, I)$.

Under this model, we have

$$p(x_t \mid y_1, \dots, y_t) \sim N(\mu_t, \Sigma_t)$$

How to obtain μ_t and Σ_t (recursively)?

Two useful facts about joint Normal distribution

(1) If $(X,Y) \sim N((\mu_x,\mu_y),\Sigma)$, then

$$E(X \mid Y) = \mu_x - \Sigma_{xy} \Sigma_{yy}^{-1} (y - \mu_y)$$

$$V(X \mid Y) = \Sigma_{xx} - \Sigma_{xy} \Sigma_{yy}^{-1} \Sigma_{yx}$$

(2) If $X \sim N(\mu_x, \Sigma_x)$ and Y = GX + Vv where $v \sim N(0, I)$, what is $p(X \mid Y) \propto p(Y \mid X)p(X)$?

First, find the joint distribution of $(X,Y) \sim N((\mu_x, \mu_y), \Sigma)$

$$\mu_{x} = \mu_{x} \text{ and } \Sigma_{xx} = \Sigma_{x}$$

$$\mu_{y} = E[Y] = E[GX + Vv] = GE[X] = G\mu_{x}$$

$$\Sigma_{xy} = E[(X - \mu_{x})(Y - \mu_{y})'] = E[(X - \mu_{x})((X - \mu_{x})'G' + v'V')] = \Sigma_{x}G'$$

$$\Sigma_{yx} = G\Sigma_{x}$$

$$\Sigma_{yy} = E[(Y - \mu_{y})(Y - \mu_{y})'] = E[G(X - \mu_{x})(X - \mu_{x})'G' + Vvv'V']$$

$$= G\Sigma_{x}G' + VV'$$

Kalman Filter:

Suppose at time t-1 we have obtained μ_{t-1} and Σ_{t-1} . That is,

$$p(x_{t-1} \mid y_1, \dots, y_{t-1}) \sim N(\mu_{t-1}, \Sigma_{t-1}).$$

• Before we observe y_t , we can use the state equation to predict x_t . That is,

$$p(x_t \mid y_1, \dots, y_{t-1}) \sim N(\mu_t^{t-1}, \Sigma_t^{t-1})$$

Note:

$$p(x_t \mid y_1, \dots, y_{t-1}) = \int p(x_t \mid x_{t-1}, y_1, \dots, y_{t-1}) dx_{t-1}$$
$$= \int p(x_t \mid x_{t-1}) p(x_{t-1} \mid y_1, \dots, y_{t-1}) dx_{t-1}$$

Since

$$x_{t} = H_{t}x_{t-1} + W_{t}w_{t}$$
, we have $x_{t} \sim N(H_{t}\mu_{t-1}, H_{t}\Sigma_{t-1}H'_{t} + W_{t}W'_{t})$

Hence
$$\mu_t^{t-1} = H_t \mu_{t-1}, \ \Sigma_t^{t-1} = H_t \Sigma_{t-1} H_t' + W_t W_t'$$

• The observation equation says:

$$y_t = G_t x_t + V_t v_t$$

It provides additional information about x_t — or correction to the prediction.

• Bayes Theorem

$$p(X \mid Y) \propto p(Y \mid X)p(X)$$

or

$$p(x_t \mid y_1, \dots, y_t) \propto p(y_t \mid x_t, y_1, \dots, y_{t-1}) p(x_t \mid y_1, \dots, y_{t-1})$$

= $p(y_t \mid x_t) p(x_t \mid y_1, \dots, y_{t-1})$

We have

$$\mu_t = \mu_t^{t-1} + K_t(y_t - G_t \mu_t^{t-1}) \qquad \Sigma_t = \Sigma_t^{t-1} - K_t G_t \Sigma_t^{t-1}$$

where
$$K_t = \sum_{t=0}^{t-1} G'_t [G'_t \sum_{t=0}^{t-1} G_t + V'V]^{-1}$$
.

Summary:

state equation: $x_t = H_t x_{t-1} + W_t w_t$ where $w_t \sim N(0, I)$

observation equation: $y_t = G_t x_t + V_t v_t$ where $v_t \sim N(0, I)$.

Kalman Filter: $(\mu_{t-1}, \Sigma_{t-1})$ to (μ_t, Σ_t)

$$\mu_{t}^{t-1} = H_{t}\mu_{t-1}$$

$$\Sigma_{t}^{t-1} = H_{t}\Sigma_{t-1}H_{t}' + W_{t}W_{t}'$$

$$\mu_{t} = \mu_{t}^{t-1} + K_{t}(y_{t} - G_{t}\mu_{t}^{t-1})$$

$$\Sigma_{t} = \Sigma_{t}^{t-1} - K_{t}G_{t}\Sigma_{t}^{t-1}$$

where

$$K_{t} = \Sigma_{t}^{t-1} G_{t}' [G_{t}' \Sigma_{t}^{t-1} G_{t} + V' V]^{-1}.$$

Note:

- Kalman filter can be used to calculate the likelihood function
- Hence often used as an estimation tool
- It can also do smoothing $p(x_t \mid y_1, \dots, y_n)$ and prediction $p(x_{t+d} \mid y_1, \dots, y_t)$.

For nonlinear systems: Use approximation

- Extended Kalman filter
- etc

Kalman Filter R implementation:

- \bullet KalmanLike
- \bullet KalmanRun
- \bullet KalmanSmooth
- \bullet KalmanForecast

1.3 Review: Basic Monte Carlo Methods

Statistical Inferences:

• Distribution: $p(\cdot, \theta)$ with unknown θ

• Objective: estimate θ .

• Observe: X_1, \ldots, X_n i.i.d.

• Method: M.L.E. or other

Monte Carlo Methods:

 \bullet Distribution: $p(\cdot,\theta)$ with known θ

ullet Objective: calculate E(h(X))

• Generate: X_1, \ldots, X_n i.i.d from $p(\cdot, \theta)$

• Method: $\sum_{i=1}^{n} h(X_i)/n$ (or improved version)

Simple methods of generating random samples:

(1) <u>Transformation</u>:

If Y = f(X), and $x \sim X$, then $y = f(x) \sim Y$

- Example: Normal(0,1): $Y = \sqrt{-2ln(X_1)}cos(2X_2)$ where X_1, X_2 independent Uniform(0,1)
- Example: Normal(μ, σ^2). $Y = \mu + \sigma X$, where $X \sim N(0, 1)$
- Example: χ_k^2 . $Y = \sum_{i=1}^k X_i^2$, where $X_i \sim N(0,1)$, independent.

(2) <u>Inverse CDF</u>:

If X has a cdf F, then $F(X) \sim U(0,1)$. If F(x) is strictly increase (in the range) then $F^{-1}(U) \sim X$ where $U \sim U(0,1)$.

Example: pdf: p(x) = 2x, (0 < x < 1).

CDF: $F(x) = x^2, 0 < x < 1$

Hence $X = \sqrt{U}$, $U \sim U(0, 1)$.

(3) Rejection method:

Example: pdf: p(x) = 2x, (0 < x < 1).

- Sample uniform points in the area.
- Accept the points under the density curve.
- The x-coordinate of the accepted points $\sim X$.

(4) Importance Sampling:

Example: pdf: p(x) = 2x, (0 < x < 1).

- In the over-presented area, down weight the sample.
- In the under-presented area, up weight the sample

How?

Target distribution π ; a sample x_1, \ldots, x_m from g.

$$E_{\pi}(f(X)) = \int f(x)\pi(x)dx = \int f(x)\frac{\pi(x)}{g(x)}g(x)dx = E_g(f(X)w(X))$$

where $w(x) = \pi(x)/g(x)$.

We have

$$\frac{1}{m} \sum_{i=1}^{m} w(x_i) f(x_i) \approx E_{\pi}(f(x))$$

Let weight $w_i \propto \pi(x_i)/g(x_i)$, we can use

$$\frac{1}{\sum w_i} \sum_{i=1}^m w_i f(x_i) \approx E_{\pi}(f(x))$$

Efficiency:

effective sample size =
$$\frac{m}{1 + cv^2(w)}$$

Example: m = 100. use U(0, 1): **ESS**= 78; N(0, 1): **ESS**= 24

- (5) Sequential Sampling $(X,Y) \sim p(x,y)$.
- (i) : Sample X = x from the marginal distribution $p(x) = \int p(x, y) dy$
- (ii): Sample Y=y from the conditional distribution $p(y\mid X=x)=p(x,y)/p(x)$

Example:

$$(X,Y) \sim N\left(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & \rho\sigma_1\sigma_2 \\ \rho\sigma_1\sigma_2 & \sigma_2^2 \end{pmatrix}\right)$$

- (i) X = x from $N(\mu_1, \sigma_1^2)$
- (ii) Y = y from $N(\mu_2 \rho \frac{\sigma_2}{\sigma_1}(x \mu_1), (1 \rho)\sigma_2^2)$.

Example: Time Series $X_t = \phi X_{t-1} + e_t$ where $e_t \sim N(0, \sigma^2)$

- (1) X_0 from $N(\mu_0, \sigma_0^2)$ (often stationary dist)
- (2) X_t from $N(\phi X_{t-1}, \sigma^2)$

(Augmentation:) Use sequential sampling when:

 $p_Y(y)$ is not easy, but $p_X(x)$ and $p(Y \mid X = x)$ are easy,

Example: $Y = X_1 + ... + X_N$,

where X_i i.i.d. $\sim Bernolli(p)$, and $N \sim Poisson(\lambda)$.

- (i) Sample $N = n \sim Poisson(\lambda)$
- (ii) Sample Y from Binomial(n, p)

Example: $Y \sim pN(\mu_0, \sigma_0^2) + (1 - p)N(\mu_1, \sigma_1^2)$

- (i) Sample I = i from Bernoulli(p)
- (ii) Sample Y from $N(\mu_i, \sigma_i^2)$

(6) Gibbs Sampler:

- \bullet p(X,Y) difficult, but $p(X \mid Y)$ and $p(Y \mid X)$ easy
- Initial values: $X = x^{(0)}, Y = y^{(0)}$. Iteratively for i = 1, ..., do
 - (i) Sample $X = x^{(i+1)}$ from $p(X \mid Y = y^{(i)})$
 - (ii) Sample $Y = y^{(i+1)}$ from $p(Y \mid X = x^{(i+1)})$
- After a burn-out period: i = 0, ..., m, the samples $(x^{(i)}, y^{(i)}), i = m + 1, ...,$ are correlated samples from p(X, Y).

Other more advanced Markov Chain Monte Carlo methods