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1.2 Review: Kalman Filter

Linear and (Gaussian System:

state equation: r; = Hixy 1 + Wywy where w; ~ N(0, 1)

observation equation: y; = Gz, + Vv,  where v, ~ N(0, I).
Examples:
e Local level structural model

state equation m; = m;_1 + &;

observation equation y;, =m;+ ¢

— Example: y;: realized volatility. m; underlying true volatil-

ity



e (random) varying coefficient linear models

state equation 5, = 3,1+ €4

observation equation y; = Zle Bitxis+ e
— Example: varying beta in CPAM:

Y=oy + My e, oqp=oau1+ery Be= o1+ g2

e AR process observed with noise

Tt—ptl 0 1 0 0 Ti—p
Lt—p+2 0 0 r -0 Lt—p+1
state : = :
Ti_1 0 0 0 1 Zp—9
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observation Y = Ty + €




e ARIMA models: ¢(B)x; =0(B) ¢
Ty = 01—+ ...+ prxt_p + g +01 g1+ ...+ Hq Et—q-
Let ¢(B)z = ¢ and z; = 0(B)z;, then ¢(B)x; = 0(B) &;.

Assume g < p.
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Linear and (Gaussian System:

state equation: r; = Hixy 1 + Wywy where w; ~ N(0, 1)

observation equation: y; = Gyxy + Vivy  where v, ~ N(0, ).
Under this model, we have

p(ze | yry .oy y) ~ N (e, 2t)

How to obtain u; and ¥; (recursively)?



Two useful facts about joint Normal distribution

(1) If (X,Y) ~ N((jis, 1), 5), then

EX|Y) = p. — Zl“yzy_g}(y — [iy)
VX 1Y) = Sp — S0y8,, Spa

(2) If X ~ N(py,2,) and Y = GX + Vv where v ~ N(0,I), what is
p(X |Y) ocp(Y | X)p(X)?
First, find the joint distribution of (X,Y) ~ N((pts, 1ty), %)

[ha

Hy
Yy

Dy
Ziyy

ey and X, =,

ElY] = FE|GX + Vv =GEX] =Gpu,

E[(X = po)(Y = )] = Bl(X = p)(X — i) G + V)] = 5,G
G,

E[(Y = p)(Y — )] = B[G(X = )(X — p1a) G + Vv V]

= GY,G + VvV
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Kalman Filter:
Suppose at time ¢t — 1 we have obtained ;1 and >; ;. That is,

P21 | Yly - Y1) ~ N(pe—1, 2-1).

e Before we observe y;, we can use the state equation to predict

x;. That is,
p(il?t | Yiy - - 7yt—1> ~ N(ﬂ§_17 Z§_1>
Note:

p(ajt | Yi, - - - 7yt—1) — /p<$t | Lt—15Y1y - - - 7?Jt—1>d33t—1

= /p(a:t | z—)p(Ti1 | Y1, - - Ye—1) AT
Since
v, = Hixy + Wywy, we have ; ~ N(Hyp_1, H,S 1 H, + W,W,)

Hence ,Mi_l = Ht,ut_l, Zi_l = tht—lH; + Wtth



e The observation equation says:
yr = Gy + Vivy

It provides additional information about r; — or correction

to the prediction.

e Bayes Theorem
p(X |Y) o< p(Y | X)p(X)
or

p(xt ’ Yty - - - 7,%) X p<yt ’ Tty Yy - - ;%—1)19(3% \ Yty - - ,yt_1)
= p(yt ’ SUt)p(CI?t \ Yiy - - 7%—1)

We have
pe =g+ Kily— Gap™') S =37 — KGX

where K; = 271G [GXG + V' V]



Summary:

state equation: r; = Hyxy 1 + Wywy where w; ~ N(0, )

observation equation: y, = Gyxy + Vv,  where v, ~ N(0, ).

Kalman Filter: (u; 1,%: 1) to (us, 2)

it = Hyuy

St = HY o H, A+ WW,
e = g+ Koy — Gu ™)
N = N = KGy

where
K, =2 'G G S G+ VIV



Note:

e Kalman filter can be used to calculate the likelihood function
e Hence often used as an estimation tool

e It can also do smoothing p(x; | y1,...,y,) and prediction p(x;., |

YLy -5 Yt

For nonlinear systems: Use approximation

e Extended Kalman filter

® ctc
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Kalman Filter R implementation:
e KalmanlLike
o KalmanRun
e KalmanSmooth

® KalmankForecast
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1.3 Review: Basic Monte Carlo Methods

Statistical Inferences:
e Distribution: p(-,6) with unknown 6
e Objective: estimate 6.
e Observe: X;,..., X, i.i.d.
e Method: M.L.E. or other

Monte Carlo Methods:
e Distribution: p(-,6) with known 6
e Objective: calculate F(h(X))
e Generate: Xi,..., X, i.i.d from p(-,0)

e Method: > " , h(X;)/n (or improved version)
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Simple methods of generating random samples:

(1) Transformation:

If Y =f(X),and v ~ X, then y = f(z) ~ Y

¢ Example: Normal(0,1): Y = /—2In(X)cos(2X;) where X;, X,
independent Uniform(0,1)

e Example: Normal(u,0°%). Y = u+0X, where X ~ N(0,1)

e Example: yi. YV = Zle X?, where X; ~ N(0,1), independent.
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(2) Inverse CDF:

If X has a cdf F, then F(X)~ U(0,1).
If F'(x) is strictly increase (in the range)
then F'~1(U) ~ X where U ~ U(0,1).

Example: pdf: p(z) =2z, (0 <z <1).

CDF: F(z)=2*0<2<1
Hence X =+/U, U ~ U(0,1).
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(3) Rejection method:

Example: pdf: p(z) =2z, (0 <z <1).

2

H

0 1
e Sample uniform points in the area.
e Accept the points under the density curve.

e The x-coordinate of the accepted points ~ X.
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(4) Importance Sampling:

Example: pdf: p(z) =2z, (0 <z <1).

1

e In the over-presented area, down weight the sample.

e In the under-presented area, up weight the sample

How?
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Target distribution 7; a sample z1,...,2, from g.

/ = [ f<x>?g<x>d:c _ B, (f(X)w(X))

()
where w(x) = ().

We have

%Zwm)f(xi) ~ E.(f(z))

Let weight w; < 7w(z;)/g(x;), we can use

Z o Z wif(w;) ~ Ex(f(2))
Efficiency:
effective sample size = m
1+ cv*(w)

Example: m = 100. use U(0,1): ESS=78; N(0,1): ESS= 24
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(5) Sequential Sampling (X,Y) ~ p(x,y).

(i) : Sample X = z from the marginal distribution p(z) = [ p(z, y)dy

(ii) : Sample Y = y from the conditional distribution p(y | X =
) = p(z,y)/p(z)

2
X Y)~N () T
2 po102 09
(i) X =2 from N(p,07)
(ii) Y =y from N(us — pP(x — ), (1 — p)o3).

Example:

Example: Time Series X; = ¢X;_; + ¢; where ¢; ~ N(0, 0%
(1) X, from N(ug,05) (often stationary dist)
(2) Xt from N(¢Xt_1,0'2)
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(Augmentation:) Use sequential sampling when:

py(y) is not easy, but px(z) and p(Y | X = z) are easy,

Example: Y = X + ...+ Xy,

where X i.i.d. ~ Bernolli(p), and N ~ Poisson(\).
(i) Sample N =n ~ Poisson(\)

(ii) Sample Y from Binomial(n, p)

Example: Y ~ pN(uo, 08) + (1 —p)N (1, U%)

(i) Sample I = ¢ from Bernoulli(p)
(ii) Sample Y from N(pu;, 07?)
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(6) Gibbs Sampler:

e p(X,Y) difficult, but p(X |Y) and p(Y | X) easy
e Initial values: X =20 Y = 4,
Iteratively for : =1...., do

(i) Sample X = z(*) from p(X | Y = y@)
(ii) Sample Y = ¢tV from p(V | X = z(+)

e After a burn-out period: : =0,..., m, the samples

(29, 4)), i =m+1,..., are correlated samples from p(X,Y).

Other more advanced Markov Chain Monte Carlo methods
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